Y Cxga. Õ Ü˜cë‹„æ G•pjˆÓ3s XN¼˜bõÌÄ9Ö à?§Ây3sŒÕS —à¶Ø ¦ S2ÃÉ9¶ïYWÌ AÿnßæF o¥—e˜”šU3Ì›ãã;ôÅPlvL°O€;3 `FÑJ Þ xaá xÖñí &Vðx ŸGFŸýzf;u Í ô>˜‡CìÇ"ƒø¦a~¯áße”äåŸÝÇÚxA A3 ªâ’ ËxÆ Ý6ž KÅæÃ &µ¡ ¶ïÚæ« Úg¾ˆø½GçA¼–âáVn™ýÛÈ»¸· ‡ÍM#. (a) eiej = 0 if i6= j (b) e2 i = ei for all i (c) Pn i=1 ei= 1 5 as rings, Ris isomorphic to a direct product of matrix rings over division rings, ie R= R1 £R2 £¢¢¢£Rr where Rj is a twosided ideal of Rand Rj is isomorphic to the ring of all nj£nj matrices with entries in a division ring ¢j;j= 1;2;;rThe integer r, the integers nj, and the division rings ¢j (up to isomorphism.
(a) eiej = 0 if i6= j (b) e2 i = ei for all i (c) Pn i=1 ei= 1 5 as rings, Ris isomorphic to a direct product of matrix rings over division rings, ie R= R1 £R2 £¢¢¢£Rr where Rj is a twosided ideal of Rand Rj is isomorphic to the ring of all nj£nj matrices with entries in a division ring ¢j;j= 1;2;;rThe integer r, the integers nj, and the division rings ¢j (up to isomorphism. Õ Ü˜cë‹„æ G•pjˆÓ3s XN¼˜bõÌÄ9Ö à?§Ây3sŒÕS —à¶Ø ¦ S2ÃÉ9¶ïYWÌ AÿnßæF o¥—e˜”šU3Ì›ãã;ôÅPlvL°O€;3 `FÑJ Þ xaá xÖñí &Vðx ŸGFŸýzf;u Í ô>˜‡CìÇ"ƒø¦a~¯áße”äåŸÝÇÚxA A3 ªâ’ ËxÆ Ý6ž KÅæÃ &µ¡ ¶ïÚæ« Úg¾ˆø½GçA¼–âáVn™ýÛÈ»¸· ‡ÍM#.
(a) eiej = 0 if i6= j (b) e2 i = ei for all i (c) Pn i=1 ei= 1 5 as rings, Ris isomorphic to a direct product of matrix rings over division rings, ie R= R1 £R2 £¢¢¢£Rr where Rj is a twosided ideal of Rand Rj is isomorphic to the ring of all nj£nj matrices with entries in a division ring ¢j;j= 1;2;;rThe integer r, the integers nj, and the division rings ¢j (up to isomorphism.
Õ Ü˜cë‹„æ G•pjˆÓ3s XN¼˜bõÌÄ9Ö à?§Ây3sŒÕS —à¶Ø ¦ S2ÃÉ9¶ïYWÌ AÿnßæF o¥—e˜”šU3Ì›ãã;ôÅPlvL°O€;3 `FÑJ Þ xaá xÖñí &Vðx ŸGFŸýzf;u Í ô>˜‡CìÇ"ƒø¦a~¯áße”äåŸÝÇÚxA A3 ªâ’ ËxÆ Ý6ž KÅæÃ &µ¡ ¶ïÚæ« Úg¾ˆø½GçA¼–âáVn™ýÛÈ»¸· ‡ÍM#. Õ Ü˜cë‹„æ G•pjˆÓ3s XN¼˜bõÌÄ9Ö à?§Ây3sŒÕS —à¶Ø ¦ S2ÃÉ9¶ïYWÌ AÿnßæF o¥—e˜”šU3Ì›ãã;ôÅPlvL°O€;3 `FÑJ Þ xaá xÖñí &Vðx ŸGFŸýzf;u Í ô>˜‡CìÇ"ƒø¦a~¯áße”äåŸÝÇÚxA A3 ªâ’ ËxÆ Ý6ž KÅæÃ &µ¡ ¶ïÚæ« Úg¾ˆø½GçA¼–âáVn™ýÛÈ»¸· ‡ÍM#. (a) eiej = 0 if i6= j (b) e2 i = ei for all i (c) Pn i=1 ei= 1 5 as rings, Ris isomorphic to a direct product of matrix rings over division rings, ie R= R1 £R2 £¢¢¢£Rr where Rj is a twosided ideal of Rand Rj is isomorphic to the ring of all nj£nj matrices with entries in a division ring ¢j;j= 1;2;;rThe integer r, the integers nj, and the division rings ¢j (up to isomorphism.


